On the Flow Induced by Centrifugal Buoyancy in a Differentially-Heated Rotating Cylinder

نویسنده

  • N. Brummell
چکیده

We consider the nature of thermally stratified flow in a closed cylinder rotating about the direction of gravity under conditions appropriate for terrestrial laboratory experiments. Motion is driven by centrifugal buoyancy, with outflow near the cold disk and inflow near the hot disk. Although similarity solutions for the infinite disk open-geometry problem exist and are easily found, even analytically in certain limits, there remain questions about the applicability of these spatially simplified models in a closed geometry with a vertical sidewall. This paper compares theoretical self-similar core solutions with computational simulations constructed to satisfy a wide range of sidewall thermal boundary conditions; insulating, conducting (with a linear temperature profile up the wall), hot (isothermal), or cold. The width of penetration of sidewall influence in toward the axis of rotation depends on the sidewall thermal boundary condition. However, as the cylinder radius is increased for a fixed height, a substantial region of the container about the axis is accurately described by the thermocline solutions of the theory. The non-self-similar region at large radius can include separation of the lower outflow boundary layer, a feature not evident in previous studies of this problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrifugal effects in rotating convection: axisymmetric states and three-dimensional instabilities

Rotating convection is analysed numerically in a cylinder of aspect ratio one, for Prandtl number about 7. Traditionally, the problem has been studied within the Boussinesq approximation with density variation only incorporated in the gravitational buoyancy term and not in the centrifugal buoyancy term. In that limit, the governing equations admit a trivial conduction solution. However, the cen...

متن کامل

Effects of Viscosity Variations on Buoyancy-Driven Flow from a Horizontal Circular Cylinder Immersed in Al2O3-Water Nanofluid

The buoyancy-driven boundary-layer flow from a heated horizontal circular cylinder immersed in a water-based alumina (Al2O3) nanofluid is investigated using variable properties for nanofluid viscosity. Two different viscosity models are utilized to evaluate heat transfer enhancement from a cylinder. Exact analytic solutions of the problem are attained employing a novel...

متن کامل

Buoyancy driven heat transfer of a nanofluid in a differentially heated square cavity under effect of an adiabatic square baffle

Buoyancy driven heat transfer of Cu-water nanofluid in a differentially heated square cavity with an inner adiabatic square baffle at different positions is studied numerically. The left and right walls of the cavity are at temperatures of Th and Tc, respectively that Th > Tc, while the horizontal walls are insulated. The governing equations are discretized using the finite volume method while ...

متن کامل

Entropy Generation of Double Diffusive Natural Convection in a Three Dimensional Differentially Heated Enclosure

Entropy generation of double diffusive natural convection in a three dimensional differentially heated enclosure has been performed numerically. Vertical walls of enclosure are heated differentially and remaining walls are adiabatic. The obtained results were presented via iso-concentration, iso-temperatures, velocity vector projection, particle trajectories, velocity profiles, iso-entropy, loc...

متن کامل

Linear Stability Analysis for the Differentially Heated Rotating Annulus

We use linear stability analysis to approximate the axisymmetric to nonaxisymmetric transition in the differentially heated rotating annulus. We study an accurate mathematical model that uses the Navier– Stokes equations in the Boussinesq approximation. The steady axisymmetric solution satisfies a two-dimensional partial differential boundary value problem. It is not possible to compute the sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999